3G-6
COST-EFFECTIVENESS ANALYSIS OF METASTATIC BREAST CANCER TREATMENTS: A STUDY BASED ON THE BOLERO-2 TRIAL
Method: A decision-analytic model was used to estimate the incremental cost-effectiveness ratio (ICER) between treatment arms of the BOLERO-2 trial according to a public payer perspective and time horizon matching the duration of the clinical trial. The population studied was composed of postmenopausal women with hormone-receptor positive (HR+) and HER2-negative metastatic breast cancer. Costs were obtained from the Center for Medicare Services drug payment table and physician fee schedule. Benefits were expressed as quality-adjusted progression-free survival weeks and quality-adjusted progression-free years, with utilities/disutilities derived from the literature. Deterministic and probabilistic sensitivity analyses were performed.
Result: Everolimus/exemestane had an incremental benefit of 11·88 QAPFW compared to exemestane or 0·22 QAPFY, and an incremental cost of $60,574. This translates into an ICER of $265,498·5/QAPFY. Key drivers of our model, by order of importance include: health utility value for stable disease, everolimus acquisition costs, and transition probabilities from the stable to the progression states. The Monte-Carlo simulation showed results that were similar to the base-case analysis.
Conclusion: Everolimus plus exemestane in postmenopausal women with hormone-receptor positive and HER2-negative metastatic breast cancer is not cost-effective compared to exemestane alone. Further research investigating the cost-effectiveness of the combination versus the monotherapy, in sub-groups of the population studied in BOLERO-2, will be beneficial.